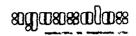


Folha de Dados

IDGED:
0107/06
LOTE:
1190
AUTOR:
AGUASOLOS; SRH
TÍTULO:
BARRAGEM BATENTE MUNICIPIO DE MORADA NOVA
SUBTÍTULO:
SANGRADOURO DO TIPO STEPPED SPILLWAY
JUNHO 1995

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DOS RECURSOS HÍDRICOS - SRH-CE


BARRAGEM BATENTE Município de Morada Nova/Ocara-Ce

SANGRADOURO DO TIPO STEPPED SPILLWAY

JULHO/95

Lote 01190 -	Prep (X) Scan () Index (Ì
Projeto Nº 01	07/06_		
Volume			
Otd A4	Qtd_A3		
OM A2	_QW A1		
Otd A0	Outros		


GOVERNO DO ESTADO DO CEARÁ SECRETARIA DE RECURSOS HÍDRICOS

BARRAGEM BATENTE

Município de MORADA NOVA/OCARA, CE..

SANGRADOURO DO TIPO STEPPED SPILLWAY

JULHO/1995

000003

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DE RECURSOS HÍDRICOS

BARBAGEM BATENTE

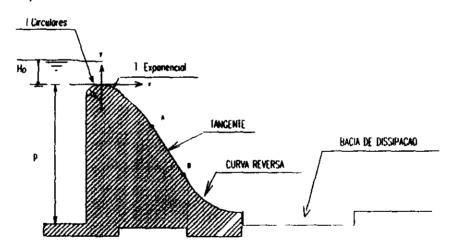
DIMENSIONAMENTO HIDRÁULICO DO SANGRADOURO

1 - CONSIDERAÇÕES GERAIS

O vertedouro de serviço do Açude Público Batente será dimensionado com base nos moldes do U.S.B.R, com perfil que se aproxima o máximo possível da lâmina d'água caindo de um vertedouro de parede deligada, através da equação

$$Q = C_0 LH^{\frac{3}{2}}$$

Onde:


Q = descarga através do sangradouro

C₀ = coeficiente de descarga

L = largura do sangradouro

H_a = lâmina máxima de sangria

O perfil assumirá a forma:

2 - DADOS DE PROJETO

No cálculo serão considerados os seguintes dados:

- descarga milenar $Q = 2.091.89 \text{ m}^3/\text{s}$

- lâmina máxima de sangria $H_0 = 3,00 \text{ m}$ - cota da soleira do sangradouro $C_z = 99,00 \text{ m}$

- profundidade do canal de acesso p= 99,00-94,50 = 4,50m

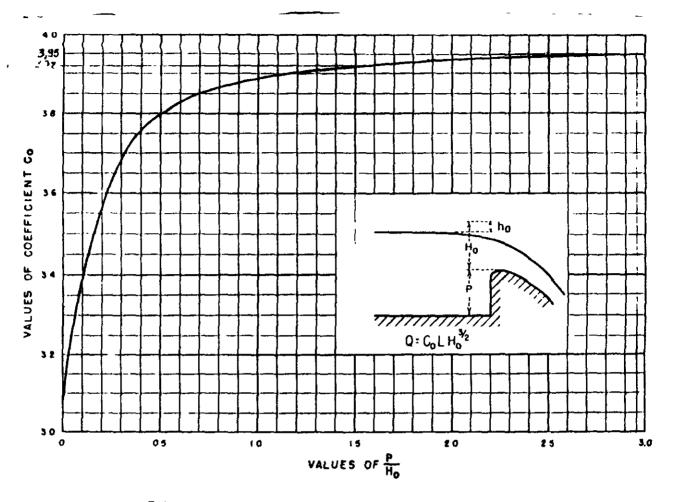
 $C_c \approx 94,50 \text{ m}$

3 - DIMENSIONAMENTO

3.1 - Cálculo da largura do sangradouro:

- cota do corte

$$L = \frac{Q}{C_0 H^{3/2}}$$

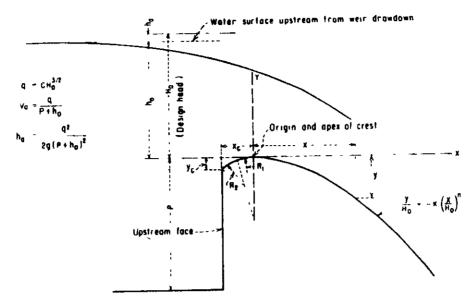

$$L = \frac{2.091,89}{C_0(3.00)^{\frac{3}{2}}}$$

$$L = \frac{402,58}{C_0}$$

Sendo C_0 função da profundidade do canal de acesso e da lâmina máxima de sangria, a partir da relação p_{H_0} , determine-se seu valor no ábaco a seguir, desenvolvido pelo U.S.B.R.

$$\frac{p}{H_0} = \frac{4.50}{3.00} = 1.50 \xrightarrow{\text{abose}} C_0 = 3.920 \text{ ft}^{-\frac{1}{2}} \therefore C_0 = 2.16 \text{ m}^{-\frac{1}{2}} \text{ s}$$

Então:


$$L = \frac{402,58}{2,16}$$

L = 186,38

Adotou-se, no projeto, uma largura L = 186,00m

32 - Determinação do perfil vertente

Para o dimensionamento do perfil vertente, seguiu-se as recomendações do U.S Bureauj of Reclamation.

(A) ELEMENTS OF NAPPE-SHAPED CREST PROFILES

$$p+H_0=p+h_0+h_a$$

Sendo:

$$h_a = \frac{{V_a}^2}{2g}$$

$$V_{\alpha} = \frac{q}{p+h_0} \longrightarrow V_{\alpha} = \frac{11,28}{(p+h_0)}$$

onde q é a descarga unitária no sangradouro :

$$q = \frac{Q}{L} = \frac{2.091,89}{186,00} = 11,28 \text{m}^3/\text{s/m}$$

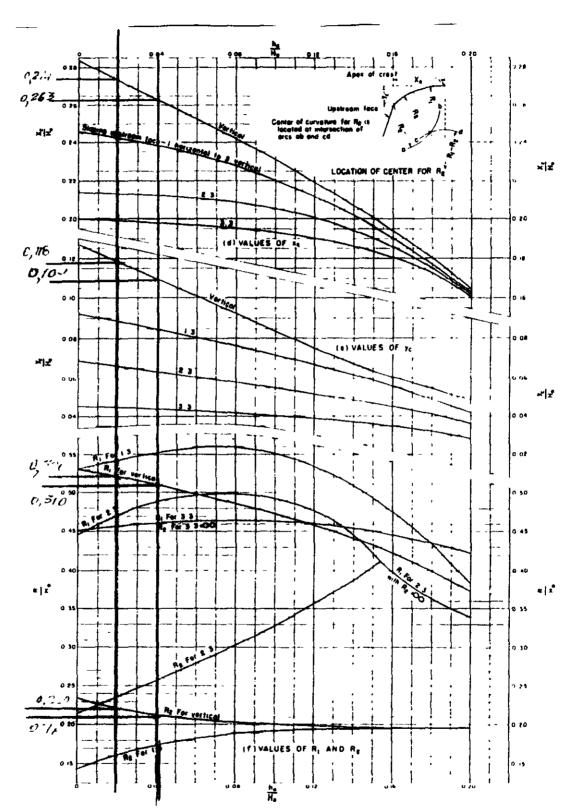
admitindo-se valores para h_0 , obtém-se os valores de v_α e h_α

$$p + H_0 = p + h_0 + h_a$$
,
 $4.50 + 3.00 = 4.50 + h_0 + h_a$;
 $h_0 + h_a = 3.00$

ho	p+ho	Va	ha	p+ho+ha
2,00	6,50	1,735	0,153	6,653
2,50	7,00	1,611	0,132	7,132
2,60	7,10	1,589	0,129	7,229
2,70	7,20	1,567	0,150	7,325
2,80	7,30	1,545	0,122	7,422
2,81	0,73	1,543	0,121	7,431
2,82	7,32	1,541	0,121	7,441
2,83	7,33	1,539	0,121	7,451
2,84	7, 34	1,537	0,120	7,460
2,85	7,35	1,535	0,120	7,470
2,86	7,36	1,533	0,120	7,480
2,87	7,37	1,531	0,119	7,489
2,88	7,38	1,528	0,119	7,499
2,89	7,39	1,526	0,119	7,509

Então:

$$h_0 = 2.88m$$


$$v_{cr} = 1.528 m/s$$

$$h_a = 0.119m$$

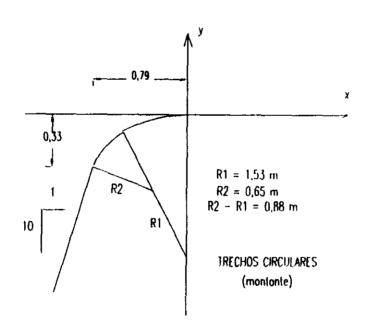
Segundo o U.S.B.R., a soleira será composta de duas curvas circulares à montante e uma exponencial à jusante dos eixos coordenados, cuja origem está na cota da soleira do sangradouro.

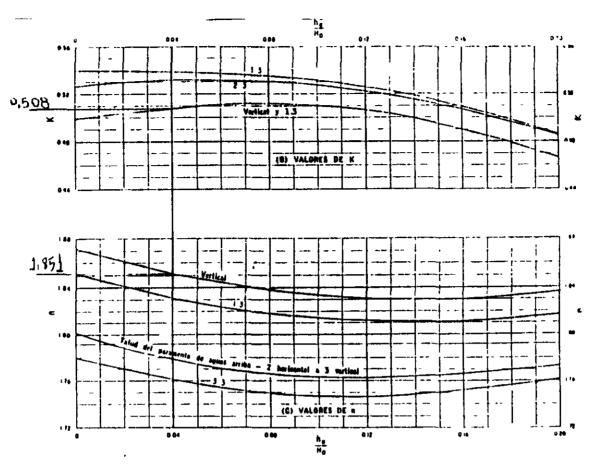
A partir da relação h_a e da inclinação do paramento de montante, encontram-se os parâmetros que definem as curvas que compõem a soleira vertente, através dos ábacos a seguir:

$$\frac{h_a}{H_0} = \frac{0.119}{3.00} = 0.0396 = 0.04$$

Factors for definition of nappe-shaped crest profiles 288-D-2407

3.2 1 - Parâmetros de Montante


$$\frac{x_c}{H_0} = 0.263 \rightarrow x_c = 0.263x3,00 = 0.789 \cong 0.79$$


$$\frac{y_c}{H_0} = 0.109 \rightarrow y_c = 0.109x3.00 = 0.327 \approx 0.33$$

$$\frac{R_1}{H_0} = 0.510 \rightarrow R_1 = 0.510 \times 3.00 \equiv 1.53$$

$$\frac{R_2}{H_0} = 0.214 \rightarrow R_2 = 0.214 \times 3.00 = 0.642 \approx 0.65$$

$$R_1 - R_2 = 0.88$$

Factores para la determinación de las secciones con la forma de la lamina vertedora

Parâmetros de jusante :

K = 0.508

n= 1,851

A exponencial à jusante dos trechos circulares segue a equação :

$$\frac{y}{H_0} = -k \left(\frac{x}{H_0}\right)^n$$

$$y = -kH_0 \left(\frac{x}{H_0}\right)^n$$

$$y = -0.508x3.00x \left(\frac{x}{3.00}\right)^{1851}$$

$$y = -1.524 \frac{x^{1.851}}{7.64}$$

$$y = -0.20x^{1.851}$$

A exponencial calculada deverá concordar com a reta de coeficiente angular igual a -1,25, ou seja, talud# 1(V): 0,8(H), no ponto A (Xa; Ya), de tangência

33 - Determinação do ponto A:

Sendo:

$$\frac{d_y}{d_x} = -1,25$$

$$y = -0.20x^{0.851}$$

$$-1,25 \approx -0.20 \times 1.85 x^{0.851}$$

$$0.25 = 0.3702X_A^{0.851}$$

$$X_A = (3.376)^{1/0.861}$$

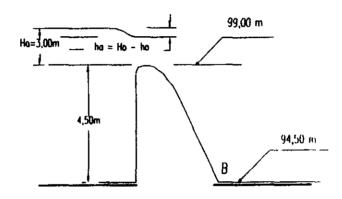
$$X_A = 4,178 \text{ m} = 4,18 \text{ m}$$

$$Y_A = -0.20 \times (4.18)^{1.861} \rightarrow Y_A = -2.82 \text{ m}.$$

Então:

Ponto A (4,18, -2,82)

Assim, o trecho exponencial, a partir da origem (0.00; 0.00) ao ponto de tangência será:


X	$y=-0,20X^{185}$	X	$Y = -0.20X^{185}$
0	Ô	2,1	-0,79
0,1	0	2,2	-0,86
0,2	-0,01	2,3	-0,93
0,3	-0,02	2,4	-1,01
0,4	-0,04	2,5	-1,09
0,5	-0,06	2,7	-1,26
0,6	-0,08	2,8	-1,34
0,7	-0,1	2,9	-1,44
0,8	-0,13	3	-1,53
0,9	-0,16	3,1	-1,62
_ 1	-0,2	3,2	-1,72
1,1	-0,24	3,3	-1,82
1,2	-0,28	3,4	-1,93
1,3	-0,33	3,5	-2,03
1,4	-0,37	3,6	-2,14

3.4 - Equação da reta tangente à exponencial calculada no ponto A :

A reta que contém o ponto A (4,18; -2,82), com coeficiente angular dy/dx = -1,25, terá a seguinte equação :

$$\frac{y - y_a}{x - x_a} = \frac{d_y}{d_x}$$

- 4.0 VERIFICANDO A NECESSIDADE DE DISSIPAR A ENERGIA DE SANGRIA.
- 4.1 Cálculo da velocidade do fluxo no pé do perfil, considerando a cota 94,50, ponto B do vertedouro:

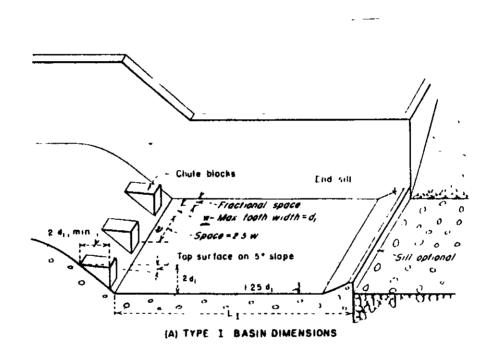
$$V_{B} = \sqrt{2gz} = \sqrt{2x9.81xz}$$

$$z = p + h_0 = 4.50 + 2.88 = 7.38 m$$

$$v_B = \sqrt{2x9.81x7.38} : v_B = 12.03 \text{m/s}$$

42 - Cálculo do tirante em B : d_B

$$d_b = \frac{q}{v_B} = \frac{11.28}{12.03} : d_B \equiv 0.94m$$


4.3 - Cálculo do número de FROUDE(#F)

$$\frac{V_8}{\sqrt{9}d_9} = \frac{12.03}{\sqrt{9.81} \times 0.94}$$

$$E = 3.96$$

44 - Escolha do tipo de bacia

Para o número de FROUDE compreendido entre 2,5 e 4,5, o U.S.B.R recomenda uma bacia de dissipação do tipo I, mostrada na figura abaixo:

4.5 -Cálculo do ressalto d₂

$$\frac{d_2}{d_1} = \frac{1}{2} \left(\sqrt{1 + 8F^2} - 1 \right)$$

$$d_2 = \frac{d_8 \cos \alpha}{2} \left(\sqrt{1 + \theta F^2} - 1 \right)$$

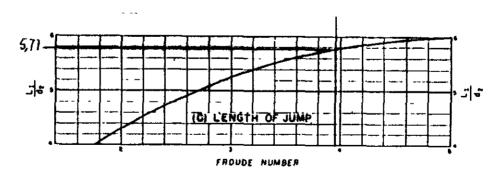
$$d_2 = \frac{0.94 \times 0.623}{2} \left(\sqrt{1 + 8(3.96)^2} - 1 \right)$$

 $d_2 \cong 3.00 \text{m}$

$$d_1 = d_0 \cos \alpha$$

$$\alpha = arctg(1.25)$$

$$d_1 = d_0$$

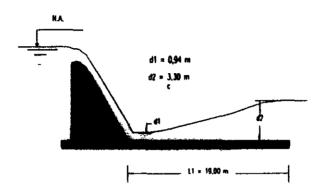

O U.S.B.R. recomenda majorar o valor de d2 em 10%, para o número de FROUDE dentro dos limites:

Assim:

$$d_2 = 1,1x3,00 = 3,30m$$

4.6 - Cálculo do comprimento da bacia L_i.

O comprimento da bacia Li, pode ser determinado através do ábaco:



Stilling basin characteristics for Froude numbers between 2.5 and 4.5

$$\frac{L_1}{d_2}$$
5,77

$$L_i = 5,77x3,30m$$

$$L_i = 19.04 \rightarrow L_i = 19.00m$$

5.0 - CÁLCULO DA ENERGIA TOTAL NA ENTRADA DA BACIA

$$E_{T} = \frac{{V_B}^2}{2g} + d_B$$

$$E_T = \frac{(12.03)^2}{2X9.81} + 0.94$$

$$E_7 = 8.32m$$

6.0 - ALTERNATIVA EM DEGRAUS

Para auxiliar na dissipação de energia, seguindo uma tendência internacional nas barragens em CCR, o paramento de jusante do vertedouro foi projetado de tal modo, que a sua geometria tenha a configuração de degraus. O sistema de degraus foi baseado nos estudos em modelo reduzido para as barragens de UPPER STILLWATER, STAGE COACH e MILLTOWN HILL, todas em CCR e pertencentes

ao U.S.B.R., bem como da barragem de MONKSVILLE, USA. Por analogia aos estudos citados, definiu-se o início dos degraus à cota 98,40m, com três degraus de 0,20m, segue-se um trecho com 5 degraus de 0,30m de altura até a cota 96,20. Deste ponto em diante, até o pé do vertedouro, os degraus terão altura de 0,60m,

Na solução em degraus, sabe-se que a velocidade a partir da crista cresce até um determinado ponto e daí em diante permanece constante até a bacia de dissipação. Esta velocidade é chamada <u>velocidade terminal</u>.

O cálculo desta velocidade, baseia-se nos estudos efetuados por SORENSEN(1985), desenvolvidos por RAJARATMAN e CRISTODOULOU nas Universidades de Alberta no Canadá e Atenas, na Grécia, que desenvolveram fórmulas empíricas com as quais determinaram também a espessura da lâmina, dada pela expressão:

$$y_0 = \sqrt[3]{\frac{c_1 q^2}{2gsen_\alpha}}$$

onde:

Cf= coeficiente de atrito dos fluídos, adotado como 0,18 para a água;

q= descarga específica =11,28m3/s/m;

α = ângulo do paramento de Jusante com a horizontal

 $\alpha = \arctan(1,25)$

sen $\alpha = 0.78$

$$y_0 = \sqrt[3]{\frac{0.18x(11.28)^2}{2x9.81x0.78}} = 1.22m$$

então :
$$v_0 = \sqrt{\frac{2gy_0 \text{ sen } \alpha}{c_1}} = \sqrt{\frac{2x9.8 \text{ ix1,22x0,78}}{0.18}}$$

$$v_0 = 10,18 m/s$$

O tipo de fluxo é comandado pelo fator yc/h, onde yc é o tirante crítico e h é a altura dos degraus.

Assim, para h=0,40m, tem-se:

$$y_c = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{(11.28)^2}{9.81}} = 3.60m$$

$$\frac{\gamma_c}{h} = \frac{3,60}{0,40} = 9,0000,80$$

Segundo os estudos de RAJARATMAN, se $\frac{y_c}{h}$)0,80 o fluxo é do tipo SKIMMING, um fluxo crescente e espumante.

Com os elementos calculados y_0 e v_0 , determina-se a energia específica no pé do sangradouro:

$$E = y_0 + \frac{v^2_0}{2g}$$

Então:

$$E=1.22+\frac{(10.18)^2}{2x9.81}$$

E= 6,50m.

7.0 - COMPARAÇÃO DA ENERGIA TOTAL DO VERTEDOURO EM DEGRAUS, COM O VERTEDOURO LISO.

A energia total, calculada, para o vertedouro liso e em degraus é, respectivamente:

$$E_1 = 8.32 m$$

$$E_0 = 6.50 \text{m}$$

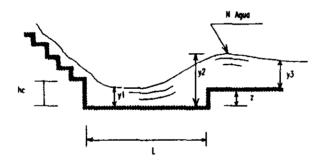
$$\Delta E = 8.32 - 6.50 = 1.82$$
m

$$\frac{\Delta E}{E_1} = \frac{1.82}{8.32} = 0.22 \rightarrow 22\%$$

onde Δ E é a diminuição de energia, entre os dois modelos.

Conclui que num vertedouro em degraus há uma redução de 22% na energia a ser dissipada no pé do vertedouro.

8 - DIMENSIONAMENTO DA BACIA DE DISSIPAÇÃO


8.1 - Cálculo do comprimento da bacia

Foi projetada uma bacia de dissipação do tipo "piscina", estudada em laboratório por Forster e Skrinde, utilizada na barragem de Monksville, nos EUA. e de Upper Stillwater, do US. Bureau of Reclamation.

Os estudos foram desenvolvidos com base na teoria dos ressaltos hidráulicos, provida uma elevação abrupta no fundo do canal, seção mais a jusante.

Os referidos autores concluíram que existe uma correlação entre o Número de Froude e as características geométricas da bacia de dissipação, de modo a fornecer a um determinado projeto a definição do desenvolvimento horizontal da piscina e as lâminas d'água no pé do vertedouro e após a elevação do canal, \underline{h} e y_3 , respectivamente.

8,2 - Dimensionamento do comprimento da bacia:

Dados de projeto: z = 1,50 m;

Espessura da lámina, já calculada: $y_0 = 1,22$ m. Tem-se, então:

$$y_0 = y_1 = 1.22 \text{ m}$$
;

$$y_2 = \frac{1}{2}y_1(\sqrt{1+8F^2} - 1) = 6.25 \text{ m};$$

 $y_3 = y_1x F^{2/3} = 1.22 \times 3.96^{2/3} = 3.07 \text{ m}.$

Entrando com os valores de $\frac{d_3}{d_1}$ e $\mathbf F$ no gráfico construído pelos citados autores, reproduzido nesta Memória, tem-se $\frac{h_c}{d_1}$:

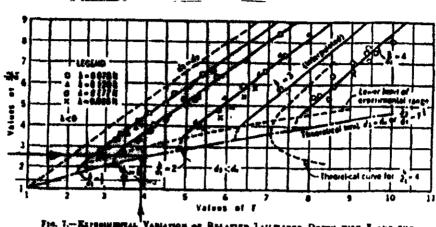
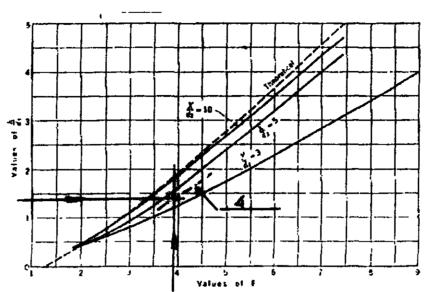


Fig. 7,--Referenced Valuation of Relative Lativates Dorth vise 7 and the Relative History of Assurt Rise

$$\frac{d_3}{d_1} = \frac{3.07}{1.22} = 2.52$$

$$\frac{h_c}{d_1} = 1.46$$


F = 3.96

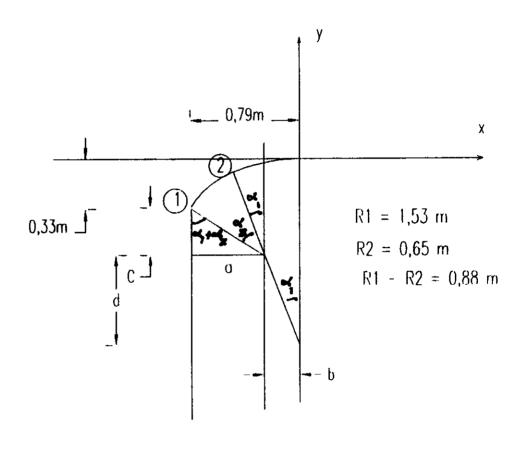
Com o valor do quociente obtido, entrando-se no gráfico correlacionando-o ao Número de Froude, obtém-se:

$$\frac{h_c}{d_1} = 1.46$$

$$\frac{L}{d_2} = 4.$$

F = 3.96

51) 6 - Experimental Vanistion of Relative Basels Height with F and the Relative Position of Juny


O comprimento teórico da bacia, seria, então:

$$L = 4 \times (1,50 + 1,48) = 8,94 \text{ m} \cong 10,00 \text{ m}.$$

Considerando a attura da lâmina, bem como o tipo de rocha, apresentando acentuado grau de intemperismo, adotou-se a bacia de dissipação com um comprimento, no sentido do fluxo igual a.

$$L = 15,00 \text{ m}.$$

90 - CÁLCULO DAS COORDENADAS DO PONTO 2

$$R_1 = 1.53$$

$$R_2 = 0.65$$

$$R_1 - R_2 = 0.88$$

$$(R_1 - R_2)$$
sen $\alpha_1 = b$
 R_2 sen $\alpha(\alpha_1 + \alpha_2) = \alpha$
 $\alpha + b = R_2$ sen $(\alpha_1 + \alpha_2) + (R_1 - R_2)$ sen α_1
 $0.79 = 0.65$ sen $(\alpha_1 + \alpha_2) + 0.88$ sen α_1
sen $\alpha_1 + 0.739$ sen $(\alpha_1 + \alpha_2) = 0.898(1)$

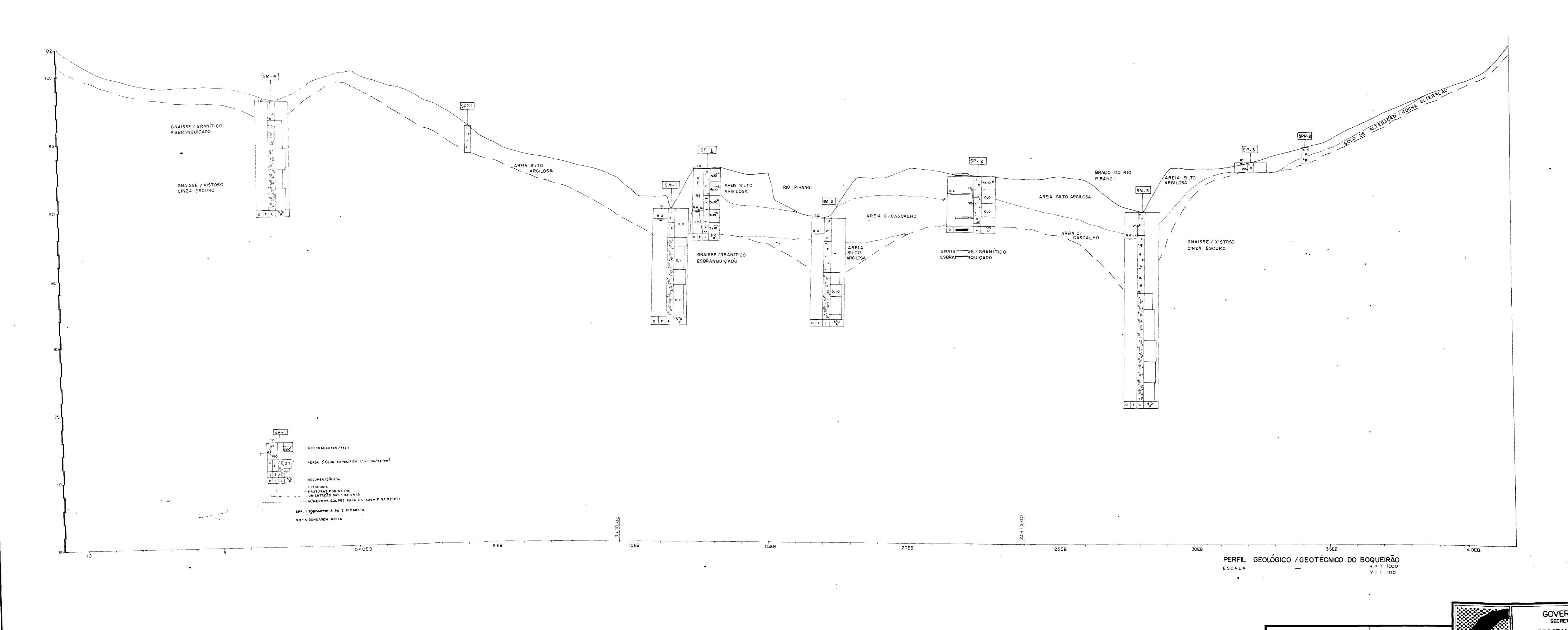
$$\begin{aligned} &\cos\alpha_1 + 0.739\cos(\alpha_1 + \alpha_2) = 1.364 \\ &\cos\alpha_1 + 0.559\cos\alpha_1 - 0.4834\sin\alpha_1 = 1.364 \\ &.559\cos\alpha_1 - 0.4834\sin\alpha_1 = 1.364 \\ &3.215\cos\alpha_1 - \sin\alpha_1 = 2.822 \\ &3.215\cos\alpha_1 - \sqrt{1-\cos^2\alpha_1} = 2.822 \\ &3.215\cos\alpha_1 - 2.822 = \sqrt{1-\cos^2\alpha_1} \\ &1.336\cos^2\alpha_1 - 18.143\cos\alpha_1 + 6.962 = 0 \\ &\cos^2\alpha_1 - 1.60\cos\alpha_1 + 0.614 = 0 \end{aligned}$$

$$\cos\alpha_1 = \frac{1,60 \pm \sqrt{(-1,60)^2 - 4x1x0.614}}{2}$$

$$\cos \alpha_1 = \frac{1,60 \pm 0,322}{2}$$

$$\cos \alpha_1 = 0.961 \rightarrow \alpha_1 = 16.064^0$$

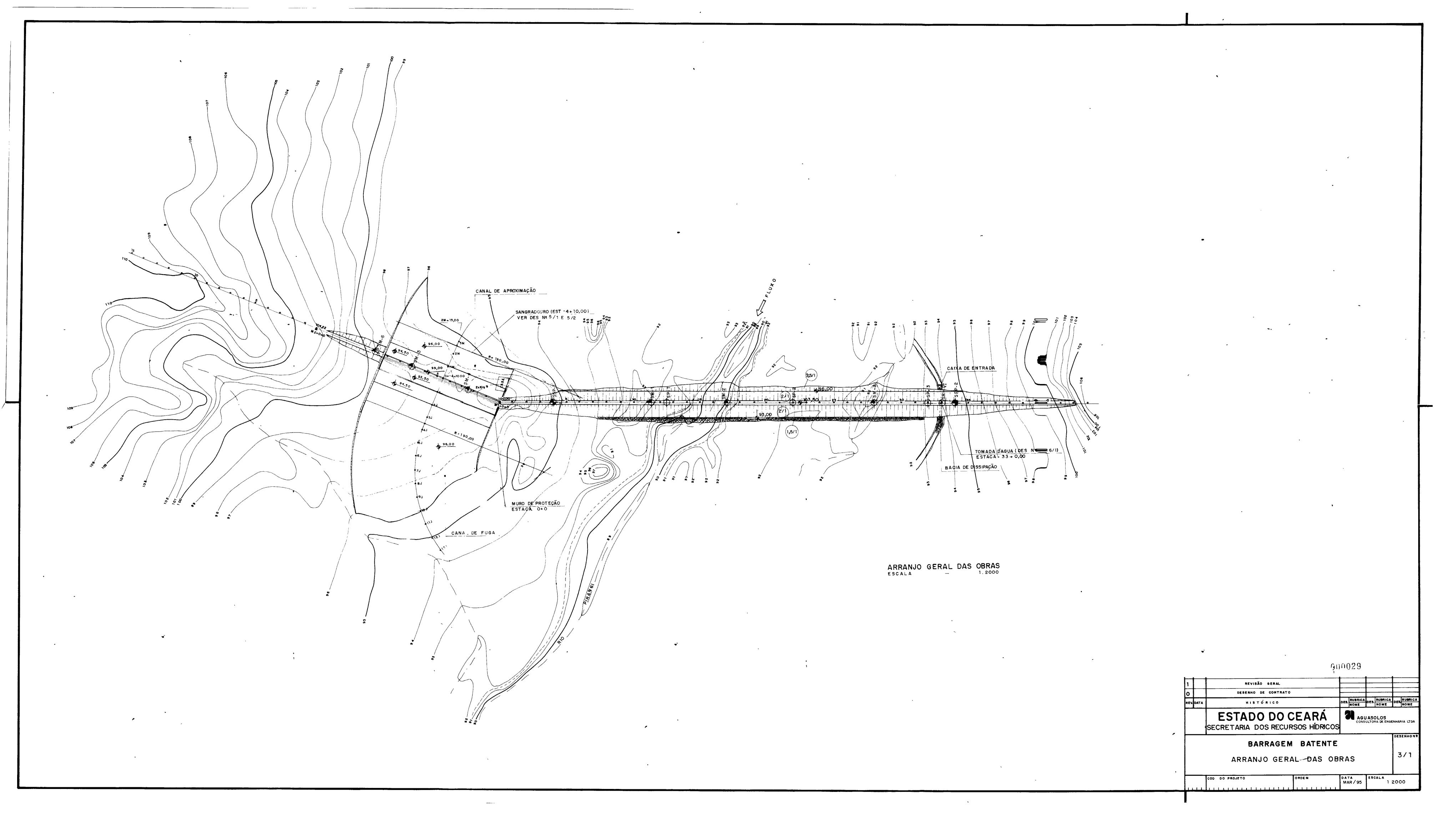
então:

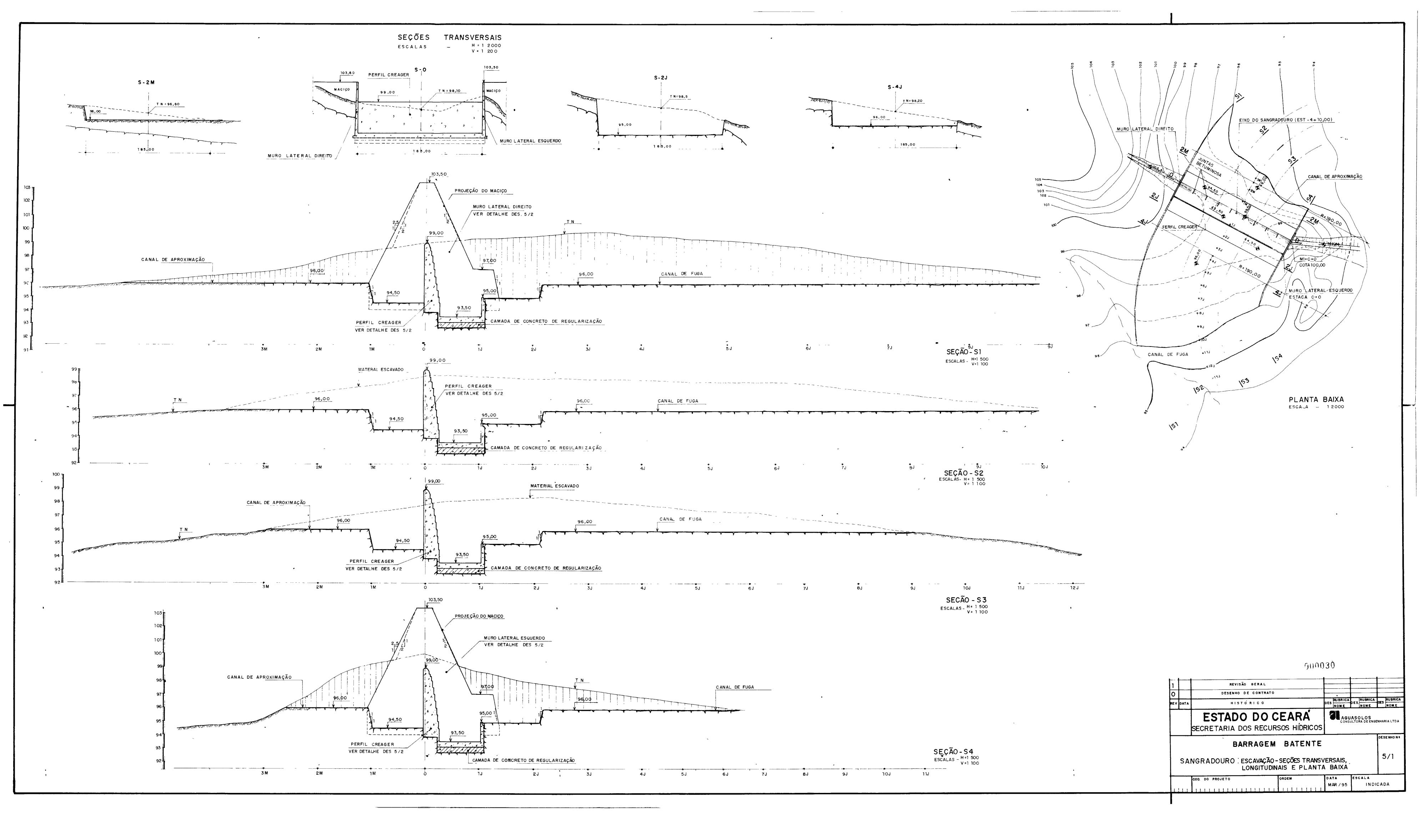

$$y_2 = R_2 - R_1 \cos \alpha_1$$

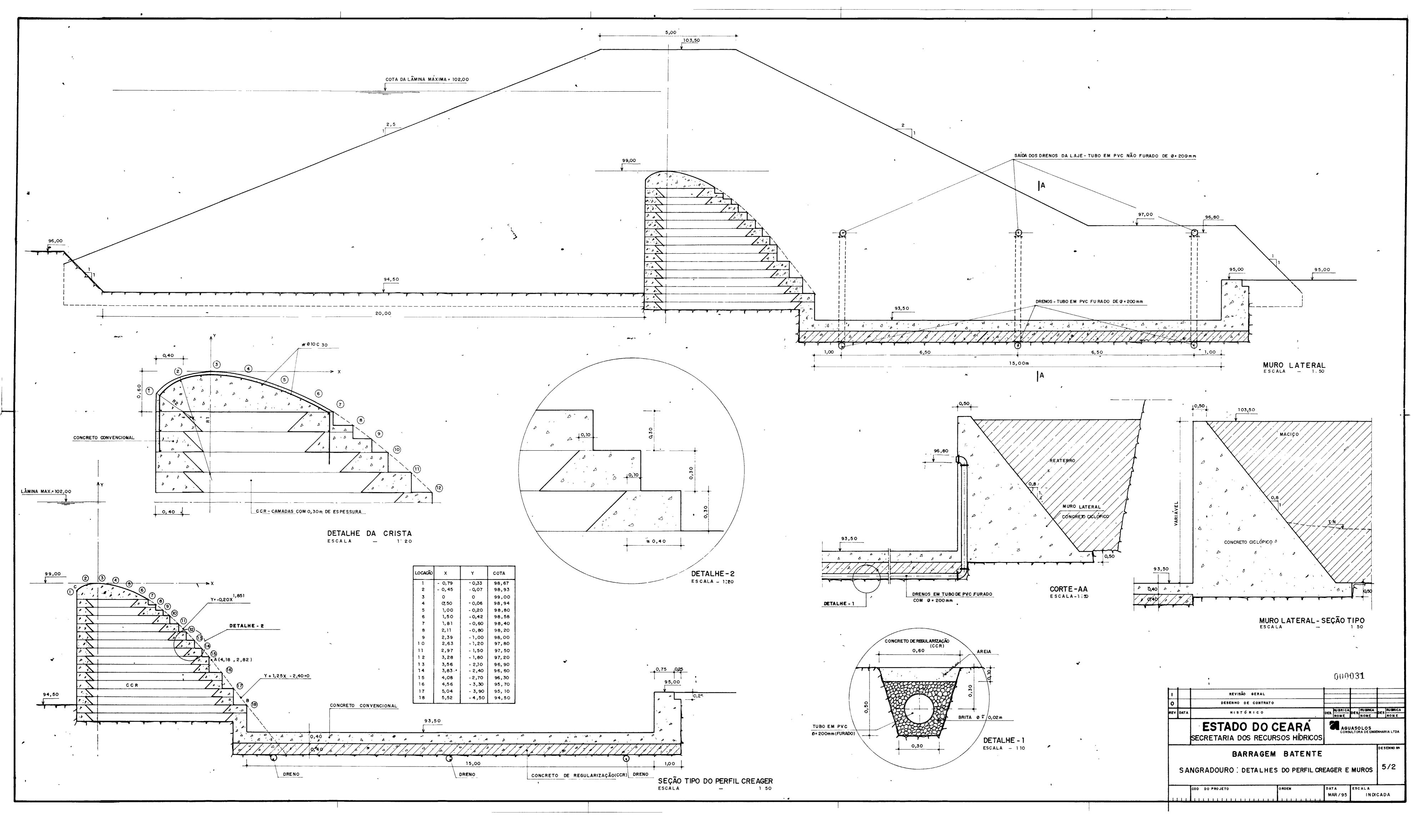
 $y_2 = 1.53 - 1.53 \times \cos 16.064^0$
 $y_2 = 0.06$

$$x_2 = R_1 sen \alpha_1$$

 $x_2 = 1.53 x sen 16.054^0$
 $x_2 = 0.42$


BIBLIOGRAFIA


- 1 U.S. BUREC Design of Samil Dams; Washington, 2nd Edition, 1974
- 2 Forster & Skrinder Control of Hydraulics Jump by Sill, ASCE, Trans. Vol 115, pg 973-87; 1950
- 3 -Sorensen, R.M. Stepped Spillway Hydraulics Model Investigation, Journal of Hydr. Div. ASCE, Vol. 111, nº 12, pg 1461-72; 1985
- 4 Rajaratnam, N. Skimming Flow in Stepped Spillways; Journal of Hydr. Div. ASCD, Vol 116, nº 4, pg 587-591; 1990
- 5 Cristodolou, G. C. Energy Dissipation on Stepped Spillways, Journal of Hydr. Div., ASCE, Vol 179, nº 5, pg. 644-649; 1993
- 6 -Bayat, H.O. Stepped Spillway Feasibility Investigation; Proc 17th Congress on Large Dams, Vienna, Austria, Q.66, R.98, pg 1803-17; 1991
- 7 Bouyge, B & alli Construction er Controle d'un Barrage en Beton Compactée au Rouleau; 16th Congress on Large Dams, S Francisco, USA; Q.62, R.34, pg 589-612, 1988
- 8 Chansxon, H. Hydraulic Design of Stepped Cascades, Channels, Weirs and Spillways; Pergamon Press, Brisbañe, Australia, 1994



SUG				GOVERNO DO ESTADO DO CEARÁ SECRETARIA DOS RECURSOS HÍDRICOS — SRH PROGRAMA: PRO-URB/CE.			
			SRI			ESCALA	
			PROJETISTA: AGUASOLOS		TOPOGRAFIA	DESENHO APROVAÇÃO	DATA
RICA	FUNÇÃO NOME	RUBRICA	RESP TÉCNICO		CONFERÊNCIA	APROVAÇÃO	DEZ /94

